Course Code: 2MSCM2 Course: Real Analysis-II Credit: 4 Last Submission Date: October 31, (for January session) April 30 (for July Session)

> Max. Marks:-70 Min. Marks:-25

Note:-attempt all questions.

Que.1 Let f be a bounded function and \propto be a monotonically increasing function on [a,b]. Then f $\epsilon R (\propto)$ on [a,b] if and only if for every $\epsilon > 0$ there exists a partition p such that

$$U(p,f, \alpha) - L(p,f, \alpha) < \in$$

Que.2 If $f_1 \in \mathbb{R} (\alpha)$ and $f_2 \in \mathbb{R} (\alpha)$ on [a, b] then

$$f_1 + f_2 \in \mathbb{R} (\propto)$$
 and $\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$

- Que.3 Let \propto be a monotonically inversing function on [a, b] and $\propto' \in \mathbb{R}$ [a, b]. Let f be a bounded real function on [a, b]. Then $f \in \mathbb{R}$ (\propto) if and only if $f \propto' \in \mathbb{R}$ [a,b]. In that case $\int_{a}^{b} f d \propto = \int_{a}^{b} f(x) \propto' (x) dx$
- Que.4 Let f(x) = x and $\propto (x) = x^2$. Does $\int_0^1 f d \propto$ exist? If it exists, find its value.
- Que.5 The sum function of a uniformly convergent series of continuous functions is itself continuous.
- Que.6 Suppose $\{f_n\}$ is a sequence of function, differentiable on [a,b] and such that $\{f_{n(x0)}\}$ converges for some point x_0 on [a,b]. If $\{f'_n\}$ converges uniformly on [a,b]. Then $\{f_n\}$ converges uniformly on [a,b] to a function f, and f (x) = $\lim_{n\to\infty} f'_n(x)$ ($a \le x \le b$)
- Que.7 State and prove Implicit function theorem.
- Que.8 If $f(t) = \int_{-\infty}^{\infty} e^{-x^2} .\cos(xt) dx$ And $g(t) = -\int_{-\infty}^{\infty} x e^{-x^2} .\sin(xt) dx$ for $-\infty < t < \infty$. Then prove that both integrals exist and f is differentiable and f'(t) = g(t)
- Que.9 Prove that $\frac{\partial(u,v,w)}{\partial(x,y,z)} \times \frac{\partial(x,y,z)}{\partial(u,v,w)} = 1$ i.e. J J' =1
- Que.10 If $u^3 + v^3 = x + y$ And $u^2 + v^2 = x^3 + y^3$. Then show that $J(u,v) = \frac{\partial (u,v)}{\partial (x,y)} = \frac{y^2 - x^2}{2uv (u-v)}$