Course Code: 2MSCM2

Course: Real Analysis-II
Credit: 4
Last Submission Date: October 31, (for January session)
April 30 (for July Session)

Max. Marks:-70
Min. Marks:-25
Note:-attempt all questions.
Que. 1 Let f be a bounded function and \propto be a monotonically increasing function on [a,b]. Then $f \in R(\propto)$ on $[a, b]$ if and only if for every $\epsilon>0$ there exists a partition p such that

$$
\mathrm{U}(\mathrm{p}, \mathrm{f}, \propto)-\mathrm{L}(\mathrm{p}, \mathrm{f}, \propto)<\epsilon
$$

Que. 2 If $f_{1} \in R(\propto)$ and $f_{2} \in R(\propto)$ on $[a, b]$ then

$$
\mathrm{f}_{1}+\mathrm{f}_{2} \in \mathrm{R}(\propto) \text { and } \int_{a}^{b}\left(f_{1}+f_{2}\right) \mathrm{d} \propto=\int_{a}^{b} f_{1} \mathrm{~d} \propto+\int_{a}^{b} f_{2} \mathrm{~d} \propto
$$

Que. 3 Let \propto be a monotonically inversing function on $[\mathrm{a}, \mathrm{b}]$ and $\propto^{\prime} \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$. Let f be a bounded real function on $[\mathrm{a}, \mathrm{b}]$. Then $\mathrm{f} \in \mathrm{R}(\propto)$ if and only if $\mathrm{f} \propto^{\prime} \in \mathrm{R}[\mathrm{a}, \mathrm{b}]$. In that case $\int_{a}^{b} f d \propto=\int_{a}^{b} f(x) \propto^{\prime}(x) d x$

Que. $4 \quad$ Let $\mathrm{f}(\mathrm{x})=\mathrm{x}$ and $\propto(\mathrm{x})=\mathrm{x}^{2}$. Does $\int_{0}^{1} f d \propto$ exist? If it exists, find its value.
Que. 5 The sum function of a uniformly convergent series of continuous functions is itself continuous.
Que. 6 Suppose $\left\{f_{n}\right\}$ is a sequence of function, differentiable on [a,b] and such that $\{$ $\left.f_{n(x 0)}\right\}$ converges for some point x_{0} on $[\mathrm{a}, \mathrm{b}]$. If $\left\{f^{\prime}{ }_{n}\right\}$ converges uniformly on [a,b]. Then $\left\{f_{n}\right\}$ converges uniformly on $[\mathrm{a}, \mathrm{b}]$ to a function f , and $\mathrm{f}(\mathrm{x})=$ $\lim _{n \rightarrow \infty} f_{n}^{\prime}(\mathrm{x})(\mathrm{a} \leq x \leq b)$
Que. 7 State and prove Implicit function theorem.
Que. 8 If $\mathrm{f}(\mathrm{t})=\int_{-\infty}^{\infty} e^{-x^{2}} \cdot \cos (x t) d x$
And $\mathrm{g}(\mathrm{t})=-\int_{-\infty}^{\infty} x e^{-x^{2}} \cdot \sin (x t) d x$ for $-\infty<t<\infty$. Then prove that both integrals exist and f is differentiable and $\mathrm{f}(\mathrm{t})=\mathrm{g}(\mathrm{t})$

Que. 9 Prove that $\frac{\partial(u, v, w)}{\partial(x, y, z)} \times \frac{\partial(x, y, z)}{\partial(u, v, w)}=1$ i.e. $\mathrm{J}^{\prime}=1$
Que. 10 If $u^{3}+v^{3}=x+y$ And $u^{2}+v^{2}=x^{3}+y^{3}$. Then show that $\mathrm{J}(\mathrm{u}, \mathrm{v})=\frac{\partial(u, v)}{\partial(x, y)}=\frac{y^{2}-x^{2}}{2 u v(u-v)}$

