Course Code: 1MSCM4
Course: Complex Analysis-I
Credit: 4
Last Submission Date: April 30 (for January Session)
October 31, (for July session)
Max. Marks:-70
Min. Marks:-25
Note:-attempt all questions.
Que. 1 Construct the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ of which the real part is

$$
u=e^{x}(x \cos y-y \sin y)
$$

Que. 2 State \& prove Couchy - Riemann Equations.
Que. 3 Find the bilinear transformation which maps the points
$Z_{1}=2, Z_{2}=i, Z_{3}=-2$ into the
Points $\mathrm{w}_{1}=1, \mathrm{w}_{2}=\mathrm{i}$ and $\mathrm{w}_{3}=-1$
Que. 4 Let $\mathrm{f}(\mathrm{z})$ be an analytic function of z in a domain D of the Z - plane and let $\mathrm{f}^{\prime}(\mathrm{z}) \neq$ 0 inside D. Then the mapping $w=f(z)$ is conformal at all points of D.

Que. 5 Let $\mathrm{f}(\mathrm{z})$ be a regular (analytic) function and let $\mathrm{f}^{\prime}(\mathrm{z})$ be continues at each point within and on a closed contour c . Then

$$
\int_{c} f(z) d z=0
$$

Que. 6 Let $\mathrm{f}(\mathrm{z})$ be analytic in the multiply connected region D bounded by the closed contour c and the two interior contours $\mathrm{c}_{1}, \mathrm{c}_{2}$ then

$$
\int_{c} f(z)=\int_{c_{1}} f(z)+\int_{c_{2}} f(z) \mathrm{dz}
$$

Que. 7 State and prove Cauchy integral formula.
Que. 8 State and prove Morea's theorem.
Que. 9 State \& prove Taylor's theorem and also gives example related with it.
Que. 10 Let $\mathrm{f}(\mathrm{z})=\frac{2 z^{3}+1}{z^{2}+z}$, then find
(1) a Taylor' s series valid in the neighbourhood of the point $\mathrm{z}=\mathrm{i}$
(2) a Laurent's series valid within the annulus of which centre in the origin.

