Course Code: 6BSC5

Course: MATHEMETICES-VI

Credit: 4

Last Submission Date: October 31, (for January session)

April 30 (for July Session)

Max. Marks:-30 Min. Marks:-10

Note:-attempt all questions.

- Que1. Define open and closed ball. Show that a closed ball in R is a closed interval.
- Que2. Define cauchy sequence in metric space (x,d) and show that the $seq^n < (-1)^n >$ is not a cauchy sequence in R
- Que3. Prove that the continues image of a connected metric space is connected.
- Que4. Define uniform continuity of a function and show that if a function f is uniformly continuous on a metric space X, then it is continuous on X. The converse need not be true.
- Que5. Find root of the equation using secant method correct to three decimal places. $F(x) \equiv x^3 + x^2 + x + 7 = 0$.
- Que6. Find polynomial using newton's divided difference formula

	$\chi \rightarrow$	-1	0	1	3	
Que7. Using	$F(x) \rightarrow$	2	1	0	-1	Gauss seidal
iteration method solve						

$$20x+y-2z=17$$
; $3x+20y-z=-18$; $2x-3y+20z=25$

- Que8. Apply R-K method of fourth order to find and approximate value of y when x=0.2 Given that $\frac{dy}{dx} = x+y$ and y=1 when x=0
- Que9. Find the median wage of the following distribution.

Wage (in Rs.	20-30	30-40	40-50	50-60	60-70
No. Of	3	5	20	10	5
labours					

Que10 Calculate the first four moments about the mean for the following distribution.

Variates	1	2	3	4	5	6	7	8	9
Frequency	1	6	13	25	30	22	9	5	2