Course Code: 5BSC5
Course: Mathematics-V
Credit: 4
Last Submission Date: April 30 (for January Session)
October 31, (for July session)
Max. Marks:-30
Min. Marks:-10
Note:-attempt all questions.
Que1. Show that the function

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{l}
\frac{x^{2} y}{x^{2}+y^{2}} \\
0 ; \text { when } x^{2}+y^{2}=0
\end{array} ; \text { when } x^{2}+y^{2} \neq 0\right.
$$

is continuous but not differentiable at $(0,0)$.
Que2. If f is a monotonic on $[a, b]$, then it is integrable on $[a, b]$.
Que3. Show that $\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{dx}$ is convergent.
Que4. Expand $f(x)=|x|$ in a fourier series on $[-l, l]$.
Que5. Define L.I and L.D vectors and show that the set $\{1, x, x(1-x)\}$ is a L.I. set of vectors in the vector space of all polynomial in R.
Que6. Define vector space and show that the set $\mathrm{V}=R^{n}(\mathrm{R})=$ $\left\{\left(a_{1}, a_{2---} a_{n}\right) \mid\right.$ ai $E R$ for $\left.i=1,2---r\right\} n$
Forms a vector space with respect to the component wise addition and scaler multiplication.
Que7. Show that T: $\mathrm{I} R_{n}[x] \rightarrow R_{n}[x]$ s.t
$\mathrm{T}\left(p_{(x)}\right)=\int_{0}^{x} p(x)_{d x}$
Is a linear transformation. Where $R_{n}[x]$ is the set of all polynomials of degree less than equal to n .
Que8. Define diagonalizability of a matrix and show that the matrix
$\mathrm{A}=\left(\begin{array}{ccc}4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1\end{array}\right)$ is diagonalizable.
Que9. Define eqnivalence relation on a set and show that the relation on the set of integer z defined by
$x R y \Leftrightarrow x \equiv y(\bmod n)$
where n is any fixed integer, form an eqnivalence relation on Z
Que10. A tree with n vertices has $\mathrm{n}-1$ edges.

