Course Code: 4BSC5 Course: MATHEMATICES-IV Credit: 4 Last Submission Date: October 31, (for January session) April 30 (for July Session)

> Max. Marks:-30 Min. Marks:-10

Note:-attempt all questions.

Que1. If
$$z^3 - 3yz - 3x = 0$$
, show that $z\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}$ and $z\left(\frac{\partial^2 z}{\partial x \partial y} + \left(\frac{\partial z}{\partial x}\right) = \frac{\partial^2 z}{\partial y^2}\right)$

Que2. If $y_1 = \frac{x_2 x_3}{x_1}$, $y_{2=\frac{x_1 x_3}{x_2}} y_{3=\frac{x_1 x_2}{x_3}}$ then shot that

the Jacobian of y_1, y_2, y_3 w.r.t x_1, x_2, x_3 is 4.

Que3. State and prove relation between Beta & Gamma function.

Que4. Evaluate
$$\int_0^2 \int_0^x \int_0^{x+y} e^x (y+2z) de dy dz$$

Que5. Solve:
$$\frac{\partial^3 z}{\partial x^3} - 7 \frac{\partial^3 z}{\partial x \partial y^2} - 6 \frac{\partial^3 z}{\partial y^3} = \sin (x+2y).$$

- Que6. Solve: $(x^2 y^2 z^2) p + 2xyq = 2xz$.
- Que7. Find the point where the Cauchy mann Equations are satisfied for the function $f(z) = xy^2 + ix^2y$, where does f'(z) exiot? where f(z) is analytic.
- Que8. Find the bilinear transformation which maps the points

 $Z_1 = i$, $Z_2 = 0$, $Z_3 = i$ into the points $w_1 = -1$, $w_2 = i$, $w_3 = 1$ respectively.

Que9. Let G be a finite group, $a \in G$ ther

$$0(cl(a)) = \frac{O(G)}{O(n(a))}$$

Were, cl (a) is the conjugate class of a.

Que10. If G is an abelian group and $f: G \to G$ such that $f(x) = x^{-1}$, $\forall x \in G$ then show that f is automorphism.