Course Code : 3BSC5
Course: Mathematics -III
Credit: 4
Last Submission Date : April 30 (for January Session)
October 31, (for July session)

Max.Marks:-30
Min.Marks:-10
Note:-attempt all questions.
Que1. Show that the sum and product of two Cauchy sequences are cauchy sequence.
Que2. Define convergent \& divergert sequnce show that if

$$
a_{n}=\sqrt{n+1}-\sqrt{n} \text {, then } \lim _{n \rightarrow \infty} a_{n}=0
$$

Que3. State \& prove cauchy mean value theorem.
Que4. Evaluate $\lim _{x \rightarrow \infty} \frac{x^{2}-2}{x^{2}+7 x+12}$
Que5. Express $\mathrm{f}(\mathrm{c})=4 x^{3}+6 x^{2}+7 x+2$ is terms of Legendre polynomials.
Que6. Find the power series solution of

$$
\left(1-x^{2}\right) y^{11}-2 x y^{1}+, 2 y=0 \text { about } x=0
$$

Que7. Evaluate $\int_{0}^{\infty} \frac{e^{t} \sin t}{t} \mathrm{dt}$
Que8. Using wnvolution theoreng, find $l^{-1}\left[\frac{5^{2}}{\left(s^{2}+a^{2}\left(s^{2}+b^{2}\right.\right.}\right], \mathrm{a} \neq \mathrm{b}$.
Que9. Six forces each equal to p , at along the edges of a cube, taken in order which do not meet a given diagonal shot, taken in order which do not meet a given diagonal show that their resultant is a couple of moment $\sqrt[2]{3} \mathrm{pa}$, where a is the edge of the cube.

Que10. State and prove Lami's theocracy.

